Chemists use electrochemistry to amp up drug manufacturing

Song Lin, assistant professor of chemistry at Cornell University. Lin and his team have developed a technique that creates vicinal diamines more easily and without the toxic waste. Credit: Cornell University

Give your medicine a jolt. By using – electrochemistry – a technique that combines electricity and chemistry, future pharmaceuticals – including many of the top prescribed medications in the United States – soon may be easily scaled up to be manufactured in a more sustainable way.

Currently, making pharmaceuticals involves creating that require several steps and intense energy. The process also spawns copious amounts of environmentally harmful – and usually toxic – waste.

At the heart of many popular pharmaceuticals are vicinal diamines, which contain carbon-nitrogen chemical bonds, a bioactive foundation for the medicine. According to Song Lin, assistant professor of chemistry, many widely consumed therapeutic agents have these diamines, including prescription-strength flu medicines, penicillin and some anti-cancer drugs.

Lin and his team have developed a technique that creates vicinal diamines more easily and without the toxic waste. The process uses electricity and chemistry – electrochemistry – and then employs Earth-abundant manganese.

“The current process generates a lot of product to make this chemical bond. When you can create a product electrosynthetically, rather than chemically, it is much more straightforward and sustainable,” Lin said.

The study is published in journal Science today.

In addition to Lin as a senior author, “Metal-catalyzed Electrochemical Diazidation of Alkenes” was written by lead author postdoctoral researcher Niankai Fu, graduate student Greg Sauer; Ambarneil Saha and Aaron Loo. Cornell laboratory startup money funded this research, and the National Science Foundation provides funding to Sauer.

More information: “Metal-catalyzed electrochemical diazidation of alkenes” Science (2017).

Leave a Comment